跳至主要內容

10、数组中的第k个最大元素


力扣链接

题意

给定整数数组 nums 和整数 k,请返回数组中第 **k** 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例 1:

输入: [3,2,1,5,6,4], k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4

提示:

  • 1 <= k <= nums.length <= 105
  • -104 <= nums[i] <= 104

解法及思路

方法一:返回升序排序以后索引为 len - k 的元素

题目已经告诉你了:

你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

因此,升序排序以后,返回索引为 len - k 这个元素即可。

这是最简单的思路,如果只答这个方法,可能面试官并不会满意,但是在我们平时的开发工作中,还是不能忽视这种思路简单的方法,我认为理由如下:

  1. 最简单同时也一定是最容易编码的,编码成功的几率最高,可以用这个最简单思路编码的结果和其它思路编码的结果进行比对,验证高级算法的正确性;
  2. 在数据规模小、对时间复杂度、空间复杂度要求不高的时候,真没必要上 “高大上” 的算法;
  3. 思路简单的算法考虑清楚了,有些时候能为实现高级算法铺路。这道题正是如此,“数组排序后的第 k 个最大的元素” ,语义是从右边往左边数第 k 个元素(从 1 开始),那么从左向右数是第几个呢,我们列出几个找找规律就好了。

一共 6 个元素,找第 2 大,索引是 46 个元素,找第 4 大,索引是 2

因此,目标元素的索引是 len - k,即找最终排定以后位于 len - k 的那个元素;

  1. 低级算法往往容错性最好,即在输入不满足题目条件的时候,往往还能得到正确的答案,而高级算法对输入数据的要求就非常苛刻

参考代码

import java.util.Arrays;
 
public class Solution {
 
    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        Arrays.sort(nums);
        return nums[len - k];
    }
}

复杂度分析

  • 时间复杂度:O(NlogN)。这里 N 是数组的长度,算法的性能消耗主要在排序,JDK 默认使用快速排序,因此时间复杂度为O(NlogN)。

  • 空间复杂度:O(1)。这里是原地排序,没有借助额外的辅助空间。

到这里,已经分析出了:

  1. 应该返回最终排定以后位于 len - k 的那个元素;

学习过 “快速排序” 的朋友,一定知道一个操作叫 partition,它是 “分而治之” 思想当中 “分” 的那一步。

经过 partition 操作以后,每一次都能排定一个元素,并且这个元素左边的数都不大于它,这个元素右边的数都不小于它,并且我们还能知道排定以后的元素的索引。

于是可以应用 “减而治之”(分治思想的特例)的思想,把问题规模转化到一个更小的范围里。

于是得到方法二。

方法二:借助 partition 操作定位

方法二则是借助 partition 操作定位到最终排定以后索引为 len - k 的那个元素。

以下的描述基于 “快速排序” 算法知识的学习,如果忘记的朋友们可以翻一翻自己的《数据结构与算法》教材,复习一下,partition 过程、分治思想和 “快速排序” 算法的优化。

在学习 “快速排序” 的时候,接触的第 1 个操作就是 partition(切分),可以先复习一下

partition(切分)操作简单介绍如下:

  • 对于某个索引 j,nums[j] 已经排定,即 nums[j] 经过 partition(切分)操作以后会放置在它 “最终应该放置的地方”;
  • nums[left] 到 nums[j - 1] 中的所有元素都不大于 nums[j];
  • nums[j + 1] 到 nums[right] 中的所有元素都不小于 nums[j]。

partition(切分)操作总能排定一个元素,还能够知道这个元素它最终所在的位置,这样每经过一次 partition操作就能缩小搜索的范围,这样的思想叫做 “减而治之”(是 “分而治之” 思想的特例)。

切分过程可以不借助额外的数组空间,仅通过交换数组元素实现。下面是参考代码:

参考代码

public class Solution {
 
    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        int left = 0;
        int right = len - 1;
 
        // 转换一下,第 k 大元素的索引是 len - k
        int target = len - k;
 
        while (true) {
            int index = partition(nums, left, right);
            if (index == target) {
                return nums[index];
            } else if (index < target) {
                left = index + 1;
            } else {
                right = index - 1;
            }
        }
    }
 
	public static int partition(int[] array, int low, int high) {
	    // 取最后一个元素作为中心元素
	    int pivot = array[high];
	    // 定义指向比中心元素大的指针,首先指向第一个元素
	    int pointer = low;
	    // 遍历数组中的所有元素,将比中心元素大的放在右边,比中心元素小的放在左边
	    for (int i = low; i < high; i++) {
	        if (array[i] <= pivot) {
		        // 将比中心元素小的元素和指针指向的元素交换位置 
		        // 如果第一个元素比中心元素小,这里就是自己和自己交换位置,指针和索引都向下一位移动 
		        // 如果元素比中心元素大,索引向下移动,指针指向这个较大的元素,直到找到比中心元素小的元素,并交换位置,指针向下移动
		        swap(array, i, pointer);
	            pointer++;
	        }
	    }
	    // 将中心元素和指针指向的元素交换位置
	    swap(array, pointer, high);
	    return pointer;
	}
	
	private static void swap(int[] arr, int i, int j) { 
		int temp = arr[i]; 
		arr[i] = arr[j]; 
		arr[j] = temp; 
	}
}

复杂度分析

  • 时间复杂度:O(N)。这里 N 是数组的长度。

  • 空间复杂度:O(1)。这里是原地排序,没有借助额外的辅助空间。

方法三:优先队列

优先队列的写法就很多了,这里例举一下所有能想到的。

假设数组有 len 个元素。

思路 1 :把 len 个元素都放入一个最小堆中,然后再 pop() 出 len - k 个元素,此时最小堆只剩下 k 个元素,堆顶元素就是数组中的第 k 个最大元素。

思路 2 :把 len 个元素都放入一个最大堆中,然后再 pop() 出 k - 1 个元素,因为前 k - 1 大的元素都被弹出了,此时最大堆的堆顶元素就是数组中的第 k 个最大元素。

思路 3 :只用 k 个容量的优先队列,而不用全部 len 个容量。

思路 4:用 k + 1 个容量的优先队列,使得上面的过程更“连贯”一些,到了 k 个以后的元素,就进来一个,出去一个,让优先队列自己去维护大小关系。

思路 5:综合考虑以上两种情况,总之都是为了节约空间复杂度。即 k 较小的时候使用最小堆,k 较大的时候使用最大堆。

根据以上思路,分别写出下面的代码:

思路 1 参考代码

//思路 1 :把 `len` 个元素都放入一个最小堆中,然后再 pop() 出 len - k 个元素,此时最小堆只剩下 `k` 个元素,堆顶元素就是数组中的第 `k` 个最大元素。
import java.util.PriorityQueue;
 
public class Solution {
 
    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        // 使用一个含有 len 个元素的最小堆,默认是最小堆,可以不写 lambda 表达式:(a, b) -> a - b
        PriorityQueue<Integer> minHeap = new PriorityQueue<>(len, (a, b) -> a - b);
        for (int i = 0; i < len; i++) {
            minHeap.add(nums[i]);
        }
        for (int i = 0; i < len - k; i++) {
            minHeap.poll();
        }
        return minHeap.peek();
    }
}

思路 2 参考代码

//思路 2 :把 `len` 个元素都放入一个最大堆中,然后再 pop() 出 k - 1 个元素,因为前 k - 1 大的元素都被弹出了,此时最大堆的堆顶元素就是数组中的第 `k` 个最大元素。
import java.util.PriorityQueue;
 
public class Solution {
 
    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        // 使用一个含有 len 个元素的最大堆,lambda 表达式应写成:(a, b) -> b - a
        PriorityQueue<Integer> maxHeap = new PriorityQueue<>(len, (a, b) -> b - a);
        for (int i = 0; i < len; i++) {
            maxHeap.add(nums[i]);
        }
        for (int i = 0; i < k - 1; i++) {
            maxHeap.poll();
        }
        return maxHeap.peek();
    }
}

思路 3 参考代码

//思路 3 :只用 `k` 个容量的优先队列,而不用全部 `len` 个容量。
import java.util.PriorityQueue;
 
public class Solution {
 
    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        // 使用一个含有 k 个元素的最小堆
        PriorityQueue<Integer> minHeap = new PriorityQueue<>(k, (a, b) -> a - b);
        for (int i = 0; i < k; i++) {
            minHeap.add(nums[i]);
        }
        for (int i = k; i < len; i++) {
            // 看一眼,不拿出,因为有可能没有必要替换
            Integer topEle = minHeap.peek();
            // 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
            if (nums[i] > topEle) {
                minHeap.poll();
                minHeap.add(nums[i]);
            }
        }
        return minHeap.peek();
    }
}

思路 4 参考代码

//思路 4:用 `k + 1` 个容量的优先队列,使得上面的过程更“连贯”一些,到了 `k` 个以后的元素,就进来一个,出去一个,让优先队列自己去维护大小关系。
import java.util.PriorityQueue;
 
public class Solution {
 
    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        // 最小堆
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(k + 1, (a, b) -> (a - b));
        for (int i = 0; i < k; i++) {
            priorityQueue.add(nums[i]);
        }
        for (int i = k; i < len; i++) {
            priorityQueue.add(nums[i]);
            priorityQueue.poll();
        }
        return priorityQueue.peek();
    }
}

思路 5 参考代码

//思路 5:综合考虑以上两种情况,总之都是为了节约空间复杂度。即 `k` 较小的时候使用最小堆,`k` 较大的时候使用最大堆。
import java.util.PriorityQueue;
 
public class Solution {
 
    // 根据 k 的不同,选最大堆和最小堆,目的是让堆中的元素更小
    // 思路 1:k 要是更靠近 0 的话,此时 k 是一个较大的数,用最大堆
    // 例如在一个有 6 个元素的数组里找第 5 大的元素
    // 思路 2:k 要是更靠近 len 的话,用最小堆
 
    // 所以分界点就是 k = len - k
 
    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        if (k <= len - k) {
            // System.out.println("使用最小堆");
            // 特例:k = 1,用容量为 k 的最小堆
            // 使用一个含有 k 个元素的最小堆
            PriorityQueue<Integer> minHeap = new PriorityQueue<>(k, (a, b) -> a - b);
            for (int i = 0; i < k; i++) {
                minHeap.add(nums[i]);
            }
            for (int i = k; i < len; i++) {
                // 看一眼,不拿出,因为有可能没有必要替换
                Integer topEle = minHeap.peek();
                // 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
                if (nums[i] > topEle) {
                    minHeap.poll();
                    minHeap.add(nums[i]);
                }
            }
            return minHeap.peek();
 
        } else {
            // System.out.println("使用最大堆");
            assert k > len - k;
            // 特例:k = 100,用容量为 len - k + 1 的最大堆
            int capacity = len - k + 1;
            PriorityQueue<Integer> maxHeap = new PriorityQueue<>(capacity, (a, b) -> b - a);
            for (int i = 0; i < capacity; i++) {
                maxHeap.add(nums[i]);
            }
            for (int i = capacity; i < len; i++) {
                // 看一眼,不拿出,因为有可能没有必要替换
                Integer topEle = maxHeap.peek();
                // 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
                if (nums[i] < topEle) {
                    maxHeap.poll();
                    maxHeap.add(nums[i]);
                }
            }
            return maxHeap.peek();
        }
    }
}